理学 >>> 化学 >>> 无机化学 有机化学 分析化学 物理化学 化学物理学 高分子物理 高分子化学 核化学 应用化学 化学其他学科
搜索结果: 1-15 共查到化学 仿生相关记录90条 . 查询时间(0.142 秒)
在生物体中,质子的浓度比其它离子低六七个数量级,为控制质子传输、维持pH平衡,生物质子通道采用了一种与其它离子通道不同的传输机制,它并不需要一个开放的通道来传输物质,而是内部形成一条连续的氢键线,质子可以在线上连续跳跃,这种独特的机制可以阻止离子和水分子的迁移,从而实现了完美的质子选择性,允许质子快速传输的同时阻止其它一切离子和分子的传输。
一种仿生不对称氢化合成手性胺的方法:本发明以过渡金属[Ru(II)]为氢化催化剂实现二氢吡咯[1,2-a]并喹喔啉类化合物的原位再生,并作为氢源应用到不饱和亚胺的不对称转移氢化中,只需加入催化量的吡咯[1,2-a]并喹喔啉即可高对映选择性合成手性胺。本发明操作简便实用,非对映/对映选择性高,产率好,且反应具有绿色原子经济性,对环境友好。
液-液相分离形成的凝聚液滴因类细胞质的内部环境、选择性富集分子的性质和动态的组装能力,被广泛用作人工细胞(器)进行研究。2023年来,研究发现细胞中广泛存在的无膜细胞器是液-液相分离形成的凝聚液滴。它的形成以及解体与细胞中的多种信号传导、代谢过程相关。然而,这些凝聚液滴易于融合,会导致结构稳定性较低,因而限制了其结构高级次化和功能复杂化。
液-液相分离形成的凝聚液滴因其类细胞质的内部环境、选择性富集分子的性质和动态的组装能力,被广泛地作为人工细胞(器)研究。近年来研究人员发现细胞中广泛存在的无膜细胞器也是液-液相分离形成的凝聚液滴,其形成与解体与细胞中的多种信号传导、代谢过程相关。而这些凝聚液滴由于易于融合而导致结构稳定性较低,限制其结构高级次化和功能复杂化。
仿生器件通过结合对生物体的模拟和研究,推动了智能电子的发展,而智能电子的物体识别能力是取代人类感官的一个重要选项,这使其能够与现实世界进行交互感知。但目前用于识别物体的技术受限于高的操作电压、复杂的外围电路,且大多依赖于电子传输, 这与生物体内神经递质以离子运输的形式不兼容。
近日,中国科学院大连化学物理研究所催化基础国家重点实验室、太阳能研究部(DNL16)李灿院士,李仁贵研究员等在光催化水氧化研究方面取得新进展。团队仿习自然光合体系中电荷传输链的原理,基于团队发现的半导体光催化剂晶面间光生电荷分离现象,在铬酸铅光催化剂光生空穴富集的氧化晶面上可控组装氧化石墨烯作为电荷传输层,进而将钴立方烷分子催化剂选择性组装到氧化石墨烯电荷传输层,实现了光生空穴从铬酸铅光催化剂至钴...
高分子水凝胶作为一种具有软、湿特性的柔性材料,一直以来被认为是实现仿生智能的理想体系,但其脆弱的三维网络结构,使得在应用过程中往往因局部的破损而失去使用的价值。近年来,研究人员通过在制备凝胶的过程中引入诸如具有动态共价键以及超分子作用的官能团,制备了一系列具有自愈合功能的高分子水凝胶。然而,现有的自愈合水凝胶仍然存在以下局限:一是破损凝胶的范围不宜过大,且修复时破损凝胶需被紧密地贴合在一起;二是破...
在国家自然科学基金支持下,哈尔滨工业大学医学与健康学院贺强教授、吴英杰副教授和中科院物理所杨明成研究员合作,在亚微米级仿生流线型胶体马达的定向运动研究方面取得最新进展,研究成果以“趋化胶体马达的扭矩驱动定向运动”为题发表于《德国应用化学》(Angewandte Chemie)。
糖尿病是一种以慢性高血糖为主要特征的复杂性代谢疾病,其发病率逐年上升,严重威胁人类健康。人体内糖稳态调控受多种组织的影响,包括脑、胰腺、肝脏和肌肉等,其中肝脏和胰岛在血糖调控过程中存在复杂的功能联系,在机体糖稳态调控中发挥重要作用。胰岛分泌的激素(如胰高血糖和胰岛素)可通过调控肝糖的合成和分解,维持体内血糖稳态的平衡。当这种调控作用失衡,往往会引起体内血糖水平失调及代谢紊乱,并可导致2型糖尿病(T...
传统的显色技术通常是利用色素来显色,然而色素具有化学性质不稳定、对环境不友好、容易褪色等缺点,导致其应用受到了诸多限制。相比于色素色,结构色是基于物质的周期性微纳结构(例如光栅、光子晶体等)对光的调控实现的,具有化学性质稳定、环保、高分辨率等优点,在显示、传感和防伪等方面具有广泛的应用前景。特别是存在于自然界生物体中的复合周期性微纳结构,可以产生卓越的光学效果,如混合色、偏振、超白、超黑、动态结构...
由肿瘤细胞、基质细胞和浸润的免疫细胞构成的高度复杂的肿瘤免疫抑制微环境(TIME)是导致肿瘤化疗和免疫治疗的治疗效率较低的重要原因。肿瘤相关巨噬细胞(TAMs)是最丰富的肿瘤浸润白细胞之一,特别是M2型TAMs在促进肿瘤生长、血管新生、肿瘤转移及免疫逃逸等方面发挥重要作用。因此通过清除或极化M2型肿瘤相关巨噬细胞有望重塑肿瘤免疫抑制微环境来提高肿瘤治疗的效果。但是由于巨噬细胞在体内广泛分布和在先天...
生物体利用金属酶活化氧气完成新陈代谢的氧化过程,受此启发,科研人员发展了一系列重要的仿生催化氧化反应体系;其中,基于非血红酶(牛磺酸双加氧酶,甲烷单加氧酶等)活性中心结构的构建的四氮铁、锰配合物在羧酸辅助下活化H2O2,实现了对C=C键和C-H键的高效选择性氧化。然而,配合物在均相氧化反应条件下易被氧化失活。长期以来,催化剂的氧化降解难题一直未得到有效解决。
便携式智能器件与长续航动力汽车的发展对可充电的二次电池的能量密度提出了更高要求。金属锂电池因其高比容量(3860 mA h g-1)和较低的标准电压而受到关注,是理想的高能量密度负极材料。然而,锂金属电池的实际应用仍面临不可控的锂离子动力学问题,如不可控的锂沉积和溶解行为、固态电解质中间相(SEI)界面的反复生成和变形以及体积膨胀等,这会引起严重的锂枝晶问题并缩短锂金属循环寿命。前期的正极研究中发...
锂金属负极因其极高的理论比容量(3860 mA h g-1),低的电化学电位(-3.04 V vs. 标准氢电极)和低的密度(0.59 g cm-3)而备受广大研究学者的青睐,成为新一代极具前景的高能量密度负极材料。但是在实际应用中,它们仍然存在一些尚未解决的问题。一方面,商业有机电解液在锂金属表面形成不稳定的固体电解质中间相(SEI),以及锂枝晶和死锂的生成,会持续消耗电解液,导致电池性能下降;...
作为一类新型的智能离子型电活性聚合物材料(EAP),离子聚合物-金属复合材料(Ionic polymer-metal composites,IPMC)是目前国际上仿生驱动技术与微-纳机电系统领域备受关注的前沿研究课题。在外场电压驱动下,阴阳离子在电极表面发生可逆的嵌入/脱嵌,引起阳极和阴极之间的体积或压力梯度,从而导致IPMC执行器发生电-机械形变。因此,电极的电化学能量存储能力和离子传输速率在改...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...