理学 >>> 化学 >>> 物理化学 >>> 催化化学 >>>
搜索结果: 46-60 共查到催化化学相关记录3936条 . 查询时间(2.296 秒)
甲苯是一种典型的挥发性有机污染物(VOCs),对环境保护和人类健康造成了严重威胁。在众多VOCs控制技术中,催化氧化法因其处理效率高、净化彻底,被认为是最具前景的净化技术之一。在其实际的工程应用中,有研究者提出通过配备热交换器、电热棒加热、气流横膈膜以及保温盖板等手段来减小能量损耗。但传统电阻加热或燃料燃烧加热模式还是会造成热量的大量流失,而且还存在启停较慢、传热效率低等问题。对此,我们之前的研究...
光驱动CO2加氢转化为高值化学品是实现“双碳”目标的一种高效策略,可以同步缓解气候问题和能源危机。一般情况下,常压下的CO2加氢反应会发生逆水煤气反应 (CO2 + H2 → CO + H2O) 和萨巴提尔反应(CO2 + 4H2→CH4 + 2H2O),分别生成CO和CH4。根据具体的应用场景,人们希望CO2加氢转化为高选择性的CO或CH4,但由于这两种反应常常同时发生,导致选择性降低,因此高选...
2024年1月15日,中国科学院大连化学物理研究所节能与环境研究部能源环境工程研究中心(DNL0901)王树东研究员、王胜研究员、宗绪鹏助理研究员等在NO、CO协同催化净化研究中取得新进展。研究团队通过常规共沉淀法,构建了具有铁单原子和铈-氧空位的铁-铈-铝混合氧化物催化剂用于CO选择性还原NO反应,并揭示了铁单原子位点与铈-氧空位的协同机制。 NO、CO是两种典型的大气污染物,普遍存在于燃煤烟...
光驱动CO2加氢转化为高值化学品是实现“双碳”目标的一种高效策略,可以同步缓解气候问题和能源危机。一般情况下,常压下的CO2加氢反应会发生逆水煤气反应 (CO2 + H2 → CO + H2O) 和萨巴提尔反应(CO2 + 4H2→CH4 + 2H2O),分别生成CO和CH4。根据具体的应用场景,人们希望CO2加氢转化为高选择性的CO或CH4,但由于这两种反应常常同时发生,导致选择性降低,因此高选...
作为生物制造核心“芯片”,酶元件广泛应用于包括食品、饲料、纺织、材料、发酵、能源、精细化学品和化学药品制造等重要工业领域。酶工程可有效提升天然酶的工业应用属性,近年来该领域广受学术界及产业界关注。
纳米酶是一类蕴含酶学特性的纳米材料,能够在生理或极端条件下催化酶的底物,具有类似于天然酶的酶促反应动力学,并且可以作为酶的替代品服务人类健康。纳米酶是多学科交叉融合的典范,在从事化学、酶学、材料、生物、医学、理论计算等多领域科学家共同推进下,如今已经成为新兴的前沿方向。纳米酶的发现揭示了纳米材料的生物学活性,然而纳米酶领域一直存在一个关键问题,即生物体内是否存在天然纳米酶?
过渡金属催化的不对称碳-氢键活化是手性科学中最重要的前沿领域之一。但该领域,尤其是惰性sp3碳-氢键立体选择性活化研究依然面临挑战。中国科学院兰州化学物理研究所羰基合成与选择氧化国家重点实验室徐森苗团队(低碳分子硼催化组)一直致力于过渡金属催化的碳氢化合物的区域和立体选择性硼化反应。
2024年1月8日,中国科学院大连化学物理研究所催化基础国家重点实验室纳米与界面催化研究中心傅强研究员团队在金属-载体强相互作用(SMSI)研究方面取得新进展,基于CuZnAl合成甲醇催化体系中的表界面研究,提出形成SMSI状态的气相迁移新途径。
2023年12月28日,目前全球规模最大的60万吨/年乙醇生产装置启动试生产,产出合格无水乙醇。该装置依托中国科学院大连化学物理研究所低碳催化与工程研究部刘中民院士团队和延长石油集团公司合作共同开发的自主技术,由淮北矿业集团碳鑫科技有限公司建设,其主要原料甲醇来源于焦炉煤气,进一步转化为乙醇,不仅提高了附加值,而且为钢铁与石化行业低碳化融合发展提供了可行途径。
本发明属于光电催化技术领域,特别涉及一种具有可见光吸收性的六边形纳米氧化铁催化剂的制备方法。具体为利用水热合成方法制备了具有纳米六边形貌的羟基氧化铁,然后在一定气氛中对样品进行煅烧得到具有六边形纳米结构的α-Fe2O3。利用水热法制备氧化铁的六边形纳米颗粒具有均匀的形貌且尺寸可控,并在可见光区具有吸收性。而且该工艺制备方法简单,简化了氧化铁制备过程的实施工艺,成本低廉,利于大规模制备。该材料在光电...
电催化二氧化碳还原(CO2R)制备高附加值碳基产品,可实现二氧化碳的资源化利用,亦可有效储存间歇性可再生电能。在碱性或中性介质中,CO2R的法拉第效率和电流密度取得了进步;而在碱性环境和中性环境,二氧化碳会与电解液中的羟基发生反应生成碳酸盐,造成二氧化碳损耗,限制二氧化碳单程转化效率。在酸性介质中,电解二氧化碳可有效解决碳利用率低的难题。然而,在酸性介质中,析氢反应的动力学非常快,导致氢气成为主要...
环境中残留的抗生素及其引起的耐药基因传播给人类健康带来严重危害。我国是抗生素生产和使用大国,在过去的几十年中抗生素滥用情况比较严重,更需要对抗生素耐药菌产生与传播实施有效管控。
中国科学院合肥物质科学研究院强磁场科学中心、安徽省高场磁共振成像重点实验室田长麟团队,联合南京大学黄小强团队与梁勇团队,在光酶催化研究领域取得进展。针对合作团队开发的焦磷酸硫胺素(ThDP)依赖酶和光催化协同的双催化新体系,田长麟团队依托稳态强磁场实验装置电子顺磁共振(Electron Paramagnetic Resonance,EPR),鉴定了催化反应中的自由基中间体及电子转移机制。12月18...
2023年12月2日至3日,先进电子显微镜成像/原位暨催化国际研讨会在上海科技大学召开。本次研讨会由上科大物质科学与技术学院、上海市高分辨电子显微学重点实验室共同主办,赛默飞世尔科技有限公司协办。为期两天的研讨会吸引了百余名师生、专家学者和业界人员参加,共同探讨先进电子显微镜成像、原位与催化等热门领域的最新研究成果。上科大物质学院教授王竹君担任会议主席。
2023年12月15日,中国科学院上海高等研究院(以下简称“上海高研院”)研究员魏伟、陈为团队在强酸性环境下高效电催化二氧化碳转化取得重要进展,研究成果以“Selective CO2 Electroreduction to Multicarbon Products Exceeding 2 A cm-2 in Strong Acid via a Hollow-Fiber Cu Penetration...

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...