理学 >>> 化学 >>> 无机化学 有机化学 分析化学 物理化学 化学物理学 高分子物理 高分子化学 核化学 应用化学 化学其他学科
搜索结果: 1-15 共查到化学 新技术相关记录69条 . 查询时间(0.915 秒)
2024年4月23日,中国科学院大连化学物理研究所催化基础国家重点实验室、太阳能研究部(DNL1600组群)李灿院士团队开发了离场电催化新技术,在室温、常压下实现硫化氢全分解制氢和硫磺,有望替代工业现行的克劳斯技术,实现天然气开采、炼油行业和煤化工过程中硫化氢的消除和资源化利用,并成为低成本制绿氢的一条新路径。
太阳能光催化分解水绿氢制备技术属于前沿低碳技术。这一技术走向应用的关键是构建高效、稳定且低成本的太阳能驱动半导体光催化材料薄膜(即人工光合成膜,又称人工树叶)。该领域常用的薄膜制备技术因制备环境苛刻或成膜质量差,所得薄膜往往难以满足太阳能光催化分解水制氢的实际应用需求。
作为“国防金属”和“工业味精”,镁和氧化镁是国防安全和生产生活的战略金属和重要材料。2023年11月5日,沈阳化工大学宣布经过3年多科研攻关和示范项目建设,该校科研人员在提供国家镁需求量80%的菱镁矿资源煅烧领域,推进了“高温过程低温化、慢速过程快速化”的工程热化学技术变革,生产能耗较传统工艺降低25%左右,生产效率和产业放大规模大幅提高。
2023年10月19日,中国科学院大连化学物理研究所催化基础国家重点实验室能源与环境小分子催化研究中心(509组群)邓德会研究员和刘艳廷副研究员团队围绕近岸/离岸海上风电制氢的需求,研发出一条以海水为原料制备氢气联产淡水的新技术,并依托该技术完成了25千瓦级装置的测试验证。
表界面化学是能源、环境和生命等前沿科学领域的核心。在分子水平上表征表界面化学,对阐明上述领域关键科学问题的化学本质具有重要意义。然而,表界面层极薄、其物种复杂性及高度动态性,对化学测量学提出了挑战。飞行时间二次离子质谱(ToF-SIMS)是迅速发展的先进表界面分析技术。而作为基于高真空环境的分析技术,SIMS难以直接分析涉及到液体的表界面。
表界面化学是能源、环境和生命等前沿科学领域的核心。在分子水平上表征表界面化学对阐明上述科学领域关键科学问题的化学本质具有重要的意义。但是,表界面层极薄、其物种复杂性及高度动态性对化学测量学提出了巨大挑战。飞行时间二次离子质谱(ToF-SIMS)是近年来得以迅速发展的先进表界面分析技术。然而,作为一种基于高真空环境的分析技术,SIMS难以直接分析涉及到液体的表界面。
食品药品安全性评价的吸附萃取新材料与色谱分析新技术
2023年5月23日,北京大学化学与分子工程学院、合成与功能生物分子中心、北大-清华生命科学联合中心、IDG/麦戈文脑科学研究所邹鹏课题组在《自然-通讯》发表题为“Genetically encoded photocatalytic protein labeling enables spatially-resolved profiling of intracellular proteome”的研究...
近日,中国科学院大连化学物理研究所氢能与先进材料研究部复合氢化物材料化学研究组(DNL1901组)陈萍研究员、曹湖军副研究员、高文波副研究员团队在化学链合成氨研究领域取得新进展,设计了一种亚氨基锂(Li2NH)介导的电驱动化学链合成氨(ECLAS)新过程,为可再生能源驱动的“绿色合成氨”过程提供了研究思路。
2023年1月,中国科学院大连化学物理研究所催化基础国家重点实验室、太阳能研究部(DNL16)李灿院士、博士后李政和李仁贵研究员等在纳米颗粒光催化完全分解水制氢的逆反应(氢气和氧气复合生成水的反应)研究方面取得新进展,确认光催化完全分解水逆反应发生于低配位活性位点,并利用原子层沉积技术精准定点修饰抑制逆反应,从而显著提升了光催化完全分解水的性能。
2023年1月29日,中国科学院大连化学物理研究所催化基础国家重点实验室、太阳能研究部中科院院士李灿、博士后李政和研究员李仁贵等,在纳米颗粒光催化完全分解水制氢的逆反应(氢气和氧气复合生成水的反应)研究方面取得新进展,确认光催化完全分解水逆反应发生于低配位活性位点,并利用原子层沉积技术精准定点修饰抑制逆反应,从而显著提升了光催化完全分解水的性能。
2023年1月18日,中国科学院大连化学物理研究所催化基础国家重点实验室、太阳能研究部中科院院士李灿、博士后李政和研究员李仁贵等在纳米颗粒光催化完全分解水制氢的逆反应(氢气和氧气复合生成水的反应)研究方面取得新进展,确认光催化完全分解水逆反应发生于低配位活性位点,并利用原子层沉积技术精准定点修饰抑制逆反应,从而显著提升了光催化完全分解水的性能。
大黄素甲醚是一种已经上市的植物源生物农药,可用于植物白粉病、霜霉病、灰霉病和炭疽病等植物病害的防治,该项技术开发单位曾先后荣获2014年国家科学进步二等奖和2015年中国发明专利金奖。目前,大黄素甲醚需要从中药大黄中提取,存在诸多弊端,如植物生长条件苛刻且缓慢、化合物丰度低分离难等,推高其生产成本的同时降低了工艺的经济性,严重限制了大黄素甲醚市场推广。
近日,据中国科学院合肥物质科学研究院消息,该院健康所医用光谱质谱研究团队提出了一种静电场离子漏斗聚焦新技术,可在静电场下实现对离子的高效聚焦引导,进而提升质谱类仪器的灵敏度。相关结果作为封面文章已发表于国际分析领域顶级期刊Analytical Chemistry(《分析化学》)。
2022年5月12日,中科院合肥研究院健康所医用光谱质谱研究团队提出了一种静电场离子漏斗聚焦新技术,可在静电场下实现对离子的高效聚焦引导,进而提升质谱类仪器的灵敏度。相关结果作为封面文章发表在国际分析领域TOP期刊Analytical Chemistry上。

中国研究生教育排行榜-

正在加载...

中国学术期刊排行榜-

正在加载...

世界大学科研机构排行榜-

正在加载...

中国大学排行榜-

正在加载...

人 物-

正在加载...

课 件-

正在加载...

视听资料-

正在加载...

研招资料 -

正在加载...

知识要闻-

正在加载...

国际动态-

正在加载...

会议中心-

正在加载...

学术指南-

正在加载...

学术站点-

正在加载...